Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS.
نویسندگان
چکیده
OBJECTIVE To characterize and follow the diffuse gray and white matter (GM/WM) metabolic abnormalities in early relapsing-remitting multiple sclerosis using proton magnetic resonance spectroscopic imaging ((1)H-MRSI). METHODS Eighteen recently diagnosed, mildly disabled patients (mean baseline time from diagnosis 32 months, mean Expanded Disability Status Scale [EDSS] score 1.3), all on immunomodulatory medication, were scanned semiannually for 3 years with T1-weighted and T2-weighted MRI and 3D (1)H-MRSI at 3 T. Ten sex- and age-matched controls were followed annually. Global absolute concentrations of N-acetylaspartate (NAA), choline (Cho), creatine (Cr), and myo-inositol (mI) were obtained for all GM and WM in the 360 cm(3) (1)H-MRSI volume of interest. RESULTS Patients' average WM Cr, Cho, and mI concentrations (over all time points), 5.3 ± 0.4, 1.6 ± 0.1, and 5.1 ± 0.7 mM, were 8%, 12%, and 11% higher than controls' (p ≤ 0.01), while their WM NAA, 7.4 ± 0.7 mM, was 6% lower (p = 0.07). There were increases with time of patients' WM Cr: 0.1 mM/year, Cho: 0.02 mM/year, and NAA: 0.1 mM/year (all p < 0.05). None of the patients' metabolic concentrations correlated with their EDSS score, relapse rate, GM/WM/CSF fractions, or lesion volume. CONCLUSIONS Diffuse WM glial abnormalities were larger in magnitude than the axonal abnormalities and increased over time independently of conventional clinical or imaging metrics and despite immunomodulatory treatment. In contrast, the axonal abnormalities showed partial recovery, suggesting that patients' lower WM NAA levels represented a dysfunction, which may abate with treatment. Absence of detectable diffuse changes in GM suggests that injury there is minimal, focal, or heterogeneous between cortex and deep GM nuclei.
منابع مشابه
Gray matter N-acetyl aspartate deficits in secondary progressive but not relapsing-remitting multiple sclerosis.
BACKGROUND AND PURPOSE Spectroscopic examination of multiple sclerosis (MS) patients has revealed abnormally low N-acetyl-aspartate (NAA) signal intensity, even in brain tissue that appears normal on high-resolution structural MR images but has yielded inconclusive evidence to distinguish the well-documented clinical differences between MS subtypes. This study used proton MR spectroscopic imagi...
متن کاملDeterminants of disability in multiple sclerosis at various disease stages: a multiparametric magnetic resonance study.
OBJECTIVE To investigate whether diffusion-tensor magnetic resonance imaging and whole brain N-acetylaspartate (WBNAA) proton magnetic resonance spectroscopy can provide complementary pieces of information to achieve a better understanding of the factors associated with disability in multiple sclerosis (MS). DESIGN Cross-sectional survey. SETTING Referral hospital-based MS center. PATIENT...
متن کاملThalamic Iron Differentiates Primary-Progressive and Relapsing-Remitting Multiple Sclerosis.
BACKGROUND AND PURPOSE Potential differences between primary progressive and relapsing remitting multiple sclerosis are the subject of ongoing controversial discussions. The aim of this work was to determine whether and how primary-progressive and relapsing-remitting multiple sclerosis subtypes differ regarding conventional MR imaging parameters, cerebral iron deposits, and their association wi...
متن کاملIncreased Anisotropy in Subcortical Gray Matter Structures: a Neurodegeneration Marker in Multiple Sclerosis
Introduction Multiple Sclerosis (MS) is not only a chronic inflammatory disease characterized by demyelination and gliosis, but the disease also implies neurodegenerative processes. MS exhibits clinically three different forms classified as relapsing-remitting (RR) phases of inflammation followed by a secondary progressive (SP) period, or directly as a primary progressive (PP) evolution which m...
متن کاملCombined magnetization transfer and proton spectroscopic imaging in the assessment of pathologic brain lesions in multiple sclerosis.
BACKGROUND AND PURPOSE Conventional MR imaging of multiple sclerosis (MS) provides relatively poor pathologic specificity, which has led to the investigation of more sophisticated MR techniques. The purpose of this study was to combine magnetization transfer (MT) imaging and proton MR spectroscopic imaging (MRSI) to evaluate the specific pathologic features of myelination and neuronal integrity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurology
دوره 80 1 شماره
صفحات -
تاریخ انتشار 2013